
Globant Code Fixer Agent

November 2024

Contributors:

Martin Alejandro Bel -martinalejandro.bel@globant.com
José Lamas Ríos - jose.lamas@globant.com
Rodolfo Anibal Lobo Carrasco - rodolfo.lobo@globant.com
Juan Michelini - juan.michelini@globant.com
Gastón Milano - gaston.milano@globant.com
German Milano - german.milano@globant.com
Marcelo Pérez - ext-marcelo.perez@globant.com
Guillermo Pasquero - guillermo.pasquero@globant.com

mailto:martinalejandro.bel@globant.com
mailto:jose.lamas@globant.com
mailto:rodolfo.lobo@globant.com
mailto:juan.michelini@globant.com
mailto:gaston.milano@globant.com
mailto:german.milano@globant.com
mailto:ext-marcelo.perez@globant.com
mailto:guillermo.pasquero@globant.com

Table of Contents

Abstract 3
Overview 4

Context and Motivation 4
Objectives 4

The Journey of Development 6
Genesis 6
Development Phases 6

Phase 0: Zero-Shot Tactic 6
Phase 1: Divide & Conquer 7
Phase 2: In Search for Experts 7
Phase 3: Current Solution 8

Key Decisions and Trade-offs 8
Globant Enterprise AI 10

System Architecture and Design 11
High-Level Architecture 11

Localization Stage 11
Fixing Stage 12
Flow Engineering 13

Core Technologies 15
Foundation Models 15
Frameworks and Libraries 15

Results 17
SWE-bench 17
Real-World Applications and Client Integration 17

Challenges and Lessons Learned 20
Roadmap 22

Current Lines of Work 22
Research Opportunities 22
Long-Term Vision 23

Acknowledgements 24
Glossary 25
About Globant 26

2

Abstract
In the context of the software industry, code repair or “bug fixing” is a complex problem that
demands analysis, planning, and significant time investment. Naturally, this task plays a critical
role in determining the speed and efficiency of engineering teams. AI systems endowed with
significant agency, particularly those based on Large Language Models (LLMs), and LLM-based
multi-agent systems have achieved state-of-art results in code-fixing tasks.

In this report, we propose a multi-agent system called Globant Code Fixer Agent (GCFA, or
simply Code Fixer Agent) developed on top of Globant Enterprise AI (GEAI) platform. In GCFA,
multiple agents collaborate in two stages: fault localization and bug fixing, to effectively
address the problem at hand.

We’ve developed an agentic architecture that is intuitive for developers while prioritizing
accuracy, speed, and cost-effectiveness. The system achieved an average of 2.65 minutes per
bug at an average cost below $1 USD per bug. Moreover, we achieved 48.33% of resolved
tickets in the SWE-Bench Lite benchmark. This positions our model as state-of-the-art when
considering runtime, accuracy, and cost compared to the solutions available in the SWE
community.

3

Overview

Context and Motivation
In today's fast-paced software development landscape, the demand for rapid and reliable code
delivery is ever-increasing. Code issues not only slow down development but also impact
software quality and user satisfaction. Traditional debugging and code review processes, while
essential, can be time-consuming and require significant human expertise. This has paved the
way for innovative solutions that leverage artificial intelligence to streamline and enhance these
processes.

Agentic AI Systems, characterized by their decision-making capabilities and high agency levels,
have emerged as powerful tools for addressing complex challenges across various domains.
The agency level of these systems determines the degree to which they can independently
manage processes and workflows, thereby minimizing human intervention.

In the context of the Software Development Life Cycle (SDLC), these systems can significantly
boost efficiency. Particularly in the debugging process, they can aid in automating and
optimizing it. Identifying patterns, analyzing code, and proposing fixes were all part of the
Agentic AI System we wanted to build, reducing reliance on manual intervention, and freeing
developers to focus on more strategic tasks such as system design. This shift not only
accelerates the development cycle but also enhances code quality by minimizing human error.

Objectives
The primary objective of our AI Agentic System is to revolutionize the way code issues are
handled in software development. By harnessing the power of AI, we aim to:

● Implement automatic fault localization: Develop advanced models and tools capable of
automatically identifying the exact location of bugs within the codebase. Recognizing
that localization is the crucial first step in successful bug resolution, the effort focuses
on enhancing the precision and speed of error detection.

● Enable automatic bug fixing: Leverage foundational models and agentic workflows to
automatically generate fixes for localized bugs. The goal is to produce effective and
efficient code corrections that can be seamlessly integrated into real-world software
environments without creating new bugs.

4

● Optimize time and cost efficiency: Ensure that both the automatic localization and fixing
processes are optimized for time and cost, making them practical and viable solutions
for businesses. This includes reducing the time developers spend on debugging and
lowering the overall costs associated with software maintenance.

● Validation using industry standards but grounded in our expertise: Set clear,
measurable standards for evaluating the effectiveness of our solutions, ensuring a high
success rate while maintaining time constraints and avoiding excessive brute-force
methods. Utilize industry-standard benchmarks like SWE-Bench-Lite as tools for
objective validation, but being aware of their many limitations1, and including our data
science expertise to evaluate results.

● Advance the SOTA in code fixing: Applied research is at the core of Globant’s AI Studio,
and it’s deeply embedded in our data scientists. We want to position the Globant Code
Fixer Agent, based on Globant Enterprise AI, at the forefront of automatic code
correction technologies. By pushing the boundaries of what's currently possible, we aim
to set new industry standards in software development practices.

1 SWE-Bench+: Enhanced Coding Benchmark for LLMs: https://arxiv.org/pdf/2410.06992

5

The Journey of Development

Genesis
Early this year, Google released a demo of Gemini 1.5 showcasing automatic code editing for a
project with a substantial number of code lines. Significant advancements in context handling
facilitated this.

Our initial, naive approach to bug fixing involved inserting as much code as possible into the
context window and then applying various prompting techniques such as Chain-of-Thought
(CoT) and Tree-of-Thoughts (ToT) to generate solutions. This method occasionally proposed
acceptable solutions for real bugs. However, we quickly encountered several issues that set us
back to the drawing board and kept us in the lab for months:

1. Insufficient context window size: Even with a 1.5 million token context window, it was
inadequate for real-world codebases. Being aware of the “Needle in a Haystack” test
results and the “Lost in the Middle” effect potentially getting in the way, we recognized
that this wasn’t the correct approach.

2. Performance and cost problems: Zero-shot and few-shot prompting with such a large
context led to performance bottlenecks and increased costs.

3. Limited output context window: While the input context window was large, the output
context window was not proportionally expansive.

4. Language variability limitations: Gemini 1.5 did not perform well across the board when
we started working with different programming languages.

5. Challenges in code editing: Editing code (still) is a significant challenge for LLMs,
requiring specialized editing strategies.

Realizing that, despite impressive demos, the problem could not be solved with a single call to
Gemini 1.5 in its current state, we initiated an intensive research effort.

Development Phases

Phase 0: Zero-Shot Tactic
As described before, the initial phase of development focused on exploring the potential of
zero-shot bug-solving. This phase was primarily a proof-of-concept (PoC) aimed at

6

https://www.youtube.com/watch?v=SSnsmqIj1MI
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf

demonstrating the value of providing a system with sufficient agency to solve bugs but without
the complexity of orchestrating agentic workflows with tool usage. We were looking to
determine whether the capabilities of existing LLMs could meet our expectations for
bug-solving efficacy. At this stage, the goal wasn't to find the most efficient solution but rather
to establish that a viable solution was achievable with the current technology. This foundational
step was crucial in validating our hypothesis and setting the stage for more sophisticated
development efforts. At this phase, it was essential to test different LLM model vendors. To
achieve this, we leveraged our GEAI platform, accelerating our development process. In the
following sections, we delve deeper into the description of this platform and how it fits into our
solution, facilitating fundamental processes in both experimentation and development.

Phase 1: Divide & Conquer
Building on the insights gained from Phase 0, we embarked on Phase 1 with a deeper
understanding of the components necessary for a successful AI Agentic System. We
recognized that the most effective agent systems typically incorporate several key elements:
task division, dedicated phases for reasoning, planning, execution, and evaluation, powerful
tools, and feedback mechanisms2. With this knowledge, we set out to refine the system by
clearly separating responsibilities.

Inspired by other innovative solutions such as the RepairAgent, we adopted a "divide and
conquer" strategy. This approach involved splitting the bug-solving process into two distinct
stages: (a) localization of the bug and (b) the actual fix. For us, this division meant we had to
transition to a multi-agent AI system, where different agents had specialized expertise and
access to codebase navigation tools (e.g., gathering project dependencies). By leveraging the
strengths of specialized agents, we achieved a significant breakthrough, particularly in bug
location, where we achieved more than 90% accuracy at the file level. Our E2E bug-fixing
capability was around 20%, though.
This phase not only marked a quantum leap in our bug-solving capabilities but also established
the baseline architecture for subsequent phases. The multi-agent approach provided a robust
framework that allowed us to efficiently allocate tasks and optimize workflows, paving the way
for further advancements in the system.

Phase 2: In Search of Experts
During this phase, we embarked on an active "search of experts" exploration, further partitioning
the fix stage and incorporating more expert agents and control checkpoints into the workflow.

2 The Rise and Potential of Large Language Model Based Agents: A Survey: https://arxiv.org/pdf/2309.07864

7

https://arxiv.org/pdf/2403.17134

We approached this with an open exploration mindset, embracing the idea that almost any
suggestion could have value and recognizing that while there might not be any magical
solutions, there could be cleaner and more efficient ones.

We experimented with different LLMs and combinations thereof, mindful of the potential
benefits of scaling laws to enhance our system's performance with minimal effort. A key
difference between Phases 1 and 2 was that in Phase 1, only the expert agents in the
localization stage had access to tools, whereas, in Phase 2, agents primarily relied on specific
prompting techniques to propose solutions, evaluate them, and edit the source files. We realized
that this tool-free approach had limitations and would eventually plateau, but it was essential to
understand these boundaries.

The step of editing the file with the proposed fix proved to be challenging. We tried a number of
approaches, including (a) editing the entire source file, (b) creating a diff file, and (c) creating a
Python script to edit the file accordingly. While exploring these methods, we encountered
significant issues with accuracy, precision, and avoidance of unrelated changes. This challenge
led us to develop a specialized tool capable of performing code edits, setting the foundation for
the next phase of development. This tool-based approach not only addressed the limitations we
encountered but also enhanced the system's overall efficacy and robustness.

Phase 3: Current Solution
Our current solution implements a set of specialized agents dedicated to the fixing stage. These
agents are responsible for proposing solutions, which are then evaluated by a critic agent acting
as a "LLM-as-a-judge." This approach is complemented by code editing tools designed to create
and apply diffs, ensuring that any changes are precise and effective. Additionally, a retry
mechanism is in place to handle instances where a fix fails, adding a layer of robustness to the
workflow. This iterative and adaptive strategy has refined our system's ability to resolve bugs
efficiently and consistently, positioning it as a cutting-edge solution in the realm of AI-driven
software development.

Key Decisions and Trade-offs
During the development of GCFA, our main driver was the desire to iterate rapidly and learn
quickly—a principle that should be at the core of any data science team. This agile approach
allowed us to adapt swiftly to new insights and challenges, ensuring that our architecture
remained robust and responsive to evolving needs.

8

To validate our solution, we tested it across various teams within the company, gathering
feedback not only on its performance but also on its usability. This user-centric evaluation was
crucial in shaping a solution that aligns with real-world demands and enhances the user
experience.

Several key decisions were pivotal in our development process:

● Architecture type: Selecting the right architecture was fundamental. We explored
various configurations to determine which would offer the optimal balance between
complexity and functionality.

● Conversation patterns: We considered different conversation patterns for agent
interactions. Finding the right communication strategy was critical to ensuring proper
collaboration among agents, enabling them to perform their tasks as best as possible.

● Tool selection and utilization: Another critical decision was which tools to integrate and
how many each agent should use. The effectiveness of each development stage
depended on equipping agents with the right tools to perform their specialized tasks.

● Integration of AI Agents by using GEAI: This approach was essential to avoid spending
excessive time on inference, model hosting, and associated complexities. Regarding
FinOps capabilities, GEAI enables you to set spending limits and execution time
constraints, which in our case, ensured that our Code Fixer Agent remained
cost-effective and efficient. By implementing these controls, we could manage
resources effectively while maintaining high performance. GEAI ensures that data flows
remain within the boundaries of Globant, adhering to strict data privacy and security
policies. This containment is crucial for maintaining trust and responsibility in our AI
applications, as it prevents sensitive information from leaving the organization's
controlled environment. On top of GEAI, numerous agents are being developed for
various specific industries. Particularly for the SDLC, where one key application is our
Code Fixer Agent. By leveraging GEAI, these agents can be customized to meet the
specific needs of different industries and processes, enhancing efficiency and
effectiveness.

As with any AI Agentic system, the selection of a foundation model (particularly LLMs) was also
part of the key decision-making process. We leveraged GEAI to test our agent strategy with
several models from different providers, including Gemini 1.5, Gemini 1.5 Flash, Claude 3.5
Sonnet (v1 and v2), GPT-4, GPT-4o, o1-mini, o1-preview, and the LLaMA family of models. GEAI

9

provided the much-needed flexibility, which saved us the burden and overhead of managing
multiple models manually.

We found that our current system implementation yields the best results using Claude 3.5
Sonnet3 for our specific use case.

Even with guidelines from the broader AI community, the solution space is just too vast, and it is
impossible to traverse it all. So, we conducted extensive research to understand what might
best suit our use case, examined what others were doing in the field, and last but not least,
tested (and failed!) a lot. Each discarded approach provided information and brought us closer
to our current solution.

We remain committed to this iterative, research-driven approach. As we continue to develop and
enhance our system, applied research will remain a cornerstone of our strategy and, hopefully,
allow us to evolve our solution to meet the challenges of AI-driven software development.

Globant Enterprise AI
Globant Enterprise AI (GEAI) serves as the umbrella under which Globant's strategy for the
adoption, integration, and creation of AI Agents is established. It is the foundational platform
that supports and accelerates the iterative development, evaluation, and deployment of
Generative AI solutions across the organization and its clients.

One of GEAI's most important features is its multi-cloud capability. This allows you to install AI
Agent solutions on any cloud provider—be it Google Cloud Platform (GCP), Amazon Web
Services (AWS), Microsoft Azure, or even on-premises. This is an essential aspect because the
platform we envision is designed to run in any enterprise environment, regardless of where their
infrastructure is hosted. This flexibility ensures that our clients can adopt our platform without
being constrained by their existing cloud setups.

3 Claude 3.5 Sonnet (2024-10-24 snapshot)

10

https://ai.globant.com/us-en/

System Architecture and Design

High-Level Architecture
The Code Fixer Agent system is a two-stage, multi-agent system. The following describes the
different stages of the multi-agent system that enable code repair.

1. Localization Stage
Task: Diagnose the bug.
Generate Asset: A localization report.

In this stage, a set of agents with access to tools navigates the codebase and searches for
candidate files that may be causing the bug. These are the files that will be passed to the next
stage as input. Once the candidates are found, a report that describes the main causes of the
bug is generated. This report serves two purposes: it provides the user with insight into the
model's functionality and acts as input for the fix stage.

Figure 1. High-level Agentic architecture of automatic bug localization stage of Globant Code Fixer Agent.

11

Available tools:

● read_file: Reads the entire file and returns its contents as a list of lines.

● search_file: Searches for a specific file in a directory and returns the path.

● search_methods_in_file: Searches for methods content in the specified file.

● get_related_files: Get related files to the specified file. Useful when you find a
suspect file to get more related files.

● search_codebase: Recursively searches for specific terms in all files within a
directory, options to search_option “exact” or “fuzzy” or “all words” or “some word.”

● search_code_in_file: Searches for a specific term in a file and returns the
matching tokens.

● detect_language_and_get_dependencies: Detect the programming language of
the project and extract dependencies.

2. Fixing Stage
Task: Fix the bug using the localization report.
Generate Asset: A patch file containing the code fixes.

A robust configuration of three specialized agents is employed at this stage, working
collaboratively to address the identified issues. The agents are defined as follows:

● Architect Agent: Generates solution proposals based on the bug localization report and
contextual understanding of the codebase. This agent utilizes foundational models to
draft fixes aligned with coding best practices and project specifications.

● Editor Agent: Implements the proposed solution by modifying the source code.
Equipped with tool integrations, the Editor Agent ensures high accuracy in executing the
Architect Agent’s proposal, addressing both syntactical and logical correctness.

● Critic Agent: Evaluates the implemented solution for correctness and alignment with the
intended fix. If the solution is deemed unsatisfactory, it triggers a retry loop, prompting
the agents to refine the fix.

12

The retry mechanism is a cornerstone of the system, enabling iterative improvements until an
acceptable solution is achieved. Each retry leverages feedback from the Critic Agent to guide
the Architect and Editor Agents in refining their outputs.

Such a multi-agent, multi-stage approach ensures efficient and accurate bug detection and
resolution, streamlining the software development process and enhancing code quality.

Figure 2. High-level Agentic architecture of the fixing stage of Globant Code Fixer Agent.

3. Flow Engineering
Code Fixer’s performance hinges on its flow engineering—the orchestration of data and task
execution among agents—and the strategic use of tools designed to augment the agents’
capabilities. Key aspects include:

● Return values design: Tools are configured to provide structured and actionable
feedback to the agents, enabling them to make informed decisions.

13

● LLM-enhanced tooling: Traditional software tools are seamlessly integrated with LLMs
to optimize the localization and fixing process, ensuring scalability and precision.

Designed with a modular and extensible structure, the architecture allows for the seamless
integration of new tools, techniques, or agents to tackle evolving challenges in software
development.

14

Core Technologies
The implementation of GCFA relies on foundation models and robust frameworks to ensure high
performance and adaptability across a range of tasks. By integrating SOTA technologies, we
have developed a system that not only meets the demands of complex problem-solving but also
provides an intuitive user experience.

Foundation Models
As mentioned before, we’ve tested several foundation models in different combinations. These
are an essential part of the research and development process. Here’s a non-comprehensive list
of the ones we evaluated:

● Claude Sonnet 3.5: a SOTA language model available in two versions, is designed for
efficient text understanding and generation, enabling nuanced comprehension and
communication. It has been utilized for most of the agents described in System
Architecture and Design since it has shown the best coding capabilities given our
workflow.

● GPT-4o, o1-preview, Gemini 1.5, Llama-3.1: These models were incorporated at various
stages of our research. Each model was selected and evaluated based on its specific
strengths, contributing to different aspects of language processing, code analysis, and
iterative problem-solving. Some of them were tested out of curiosity about their
performance, knowing that they may not be ready for a productive environment.
Currently, we use GPT-4o as a fallback for Sonnet. This setup is designed to handle
situations where Sonnet may be unavailable, such as when a rate limit is reached,
thereby enhancing system robustness at the cost of some performance.

● GPT-4o mini: Used primarily in GCFA’s CLI, the model excels in quick and precise code
modifications, supporting the system's debugging and code refinement processes.

Frameworks and Libraries
To support the diverse functionalities of our system, we have integrated several awesome
frameworks and libraries. The ones to highlight are the following:

● AutoGen: A framework that facilitates automated workflows, Autogen enables seamless
execution of tasks such as testing, debugging, and report generation with minimal
manual intervention. It emerged as our top pick among several possible agent

15

https://www.anthropic.com/claude/sonnet
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#o1
https://ai.google.dev/gemini-api/docs/models/gemini
https://ai.meta.com/blog/meta-llama-3-1/
https://platform.openai.com/docs/models#gpt-4o-mini
https://microsoft.github.io/autogen/0.2/

frameworks. It allows us to create conversation patterns between agents fairly easily.
We’re currently using v0.2 but are planning to migrate to v0.4 once it’s stable enough.

● Tree-sitter: Since we’re dealing with codebases, we needed to create tools for our agents
that could create and traverse ASTs—tree-sitter was our top-of-mind for this. As a parser
generator tool and incremental parsing library, it is essential for code analysis and
manipulation. Tree-sitter provides the structural analysis needed to understand and
process source code efficiently, forming a backbone for the system’s code-related tasks.

● Chameleon: A GeneXus library of white-label, highly customizable, and reusable web
components, Chameleon serves as the foundation for visualization and end-user
interaction. It supports the creation of a dynamic and adaptable user interface,
facilitating a more intuitive and accessible experience for users interacting with AI
agents.

This combination of foundation models and frameworks underpins the system's ability to
deliver high performance and adaptability, ensuring that it remains at the forefront of AI-driven
innovation.

16

https://tree-sitter.github.io/tree-sitter/
https://www.npmjs.com/package/@genexus/chameleon-controls-library
https://www.genexus.com/en/

Results

SWE-bench
SWE-bench is a benchmark designed to evaluate codebase problems using verifiable in-repo
unit tests. The full dataset contains 2,294 issue-commit pairs across 12 Python repositories,
offering diverse and challenging evaluation tasks for long-term assessments of language
models (LMs). However, the complexity and computational demands of the SWE-bench have
posed challenges for systems aiming for short-term progress. To address this, SWE-bench Lite
was introduced as a streamlined, canonical subset of 300 instances focused on functional bug
fixes. This subset maintains the diversity and distribution of repositories in the original dataset,
covering 11 of the 12 repositories. An additional 23 development instances were curated to aid
active development on SWE-bench tasks. Our results are being evaluated using SWE-bench Lite,
consistently achieving outcomes that position us among the top-performing or SOTA solutions
globally, with 48.33% of solved tickets.

The submission of results in SWE-bench requires the publication of the agents' internal states
to verify the logical process of ticket resolution through logs and trajectories. For more
information, you can refer to the results published by competitors on the SWE benchmark
website.

Real-world Applications and Client Integration

Our work extends beyond achieving high performance on benchmarks; we are actively
deploying our solution in real-world client scenarios. The localization phase is extremely
important because it guides our teams to the precise areas in the codebase where issues
reside. Accurate fault localization empowers developers to focus their efforts effectively,
significantly reducing the time spent on debugging and enhancing overall productivity.

We have integrated our system with industry-standard tools like Jira, incorporating a preliminary
phase of problem understanding before initiating localization. This integration allows us to
extract contextual information from issue reports, enabling a more informed and targeted
localization process. By understanding the problem's context through Jira tickets, our solution
can provide more accurate and relevant localization results, streamlining the transition from
issue identification to resolution.

17

https://www.swebench.com/lite.html
https://www.swebench.com/
https://www.swebench.com/

We believe that automatic fixing will transform many workflows within the software
development lifecycle. To accommodate diverse user needs and integrate seamlessly into
existing processes, we have developed three modes of interaction with our code fixer:

1. Batch Mode: Used primarily for running benchmarks, this mode allows for the
automated processing of multiple fixes without user intervention. It's ideal for
large-scale codebases and continuous integration pipelines where efficiency is
paramount.

2. Chat Command Line Interface: This mode facilitates integration with tools like Copilot
and other IDE assistants. Developers can interact with the code fixer through
command-line prompts within their development environment, making it a convenient
option for those who prefer a more hands-on approach.

Figure 3. Screenshot of GCFA’s chat command line interface.

18

3. Web Interface: We have created a web-based interface that enables users to monitor the
progress of code fixing in real time. This interface combines a visual client with
conversational capabilities, allowing for iterative interactions and providing a
transparent view of the fixing process.

Figure 4. Screenshot of GCFA’s web interface.

● By offering multiple interaction methods, we ensure that our solution is flexible and
adaptable to various development workflows. Whether through automated batch
processing, command-line interactions, or a user-friendly web interface, our code fixer
integrates seamlessly into the developer's toolkit. This versatility not only enhances
productivity but also facilitates efficient bug resolution in real-world applications,
affirming our commitment to delivering practical and impactful agents for our clients.

19

Challenges and Lessons Learned
Throughout the development of GCFA, we faced several significant challenges:

1. Context window limitations: Managing various context windows was a considerable
hurdle. Despite advances that allow for larger context windows—even those exceeding a
million tokens—they quickly become insufficient for real-world projects with extensive
codebases. Utilizing these large contexts can be inefficient and costly, particularly
concerning response times, even after implementing optimizations like prompt caching.

2. Necessity of an agentic solution: Ensuring the need for an agentic solution, where
iterative loops take precedence over simple few-shot prompting, became an area of
continuous evolution. Relying solely on few-shot prompting proved inadequate for
complex tasks. Developing a loop-based, agent-driven approach allowed for more
nuanced and effective problem-solving but required significant research and refinement.

3. Integrating diverse agent frameworks with various models: We encountered challenges
in harmonizing different agent frameworks with the specific requirements of each
language model. Some models, like o1, do not support system prompts, while others
have limitations regarding message role sequences or tool usage. This required
meticulous adjustments and customizations to ensure compatibility and optimal
performance across different models and frameworks.

4. Navigating model guardrails: Dealing with the guardrails implemented in certain models
was also a challenge. These built-in safety features sometimes restricted the models
from performing desired actions, requiring us to find workarounds without
compromising ethical guidelines or model integrity. This involved careful prompt
engineering and, at times, selecting alternative models better suited to our needs.

5. Generating successful code edits: Facilitating successful edits to code files proved
difficult. In their current state, large language models (LLMs) without specialized tools
struggle to perform precise code editing tasks. The challenge underscored the need for
strategies and tools to enhance LLMs' capabilities in code manipulation, such as
incorporating external code editors or developing specialized editing prompts.

6. Cross-language support: Another significant challenge was developing a solution that is
cross-language compatible. Our goal was not only to target Python but to support a wide
range of programming languages. The solution we achieved supports numerous
languages, including:

20

○ Primary Languages Tested: Python, Java, C#, JavaScript, TypeScript.

○ Additional Supported Languages: Delphi, ELisp, Go, Guile, Haskell, Julia, Kotlin,
Lua, OCaml, Odin, Perl, R, Ruby, Rust, Swift.

7. Tooling: Developing tools to handle the syntactic and semantic nuances of diverse
programming languages required significant effort. Our models and frameworks needed
to parse, analyze, and modify code across various paradigms. While testing focused on
Python, Java, C#, JavaScript, and TypeScript, expanding support involved addressing
challenges such as language-specific syntax, standard libraries and frameworks, and
adapting tooling and compilation pipelines for different languages.

These challenges underscored the complexity of developing an effective automatic code-fixing
solution that is versatile and scalable across multiple programming languages.

21

Roadmap

Current Lines of Work
Our ongoing efforts are focused on advancing the capabilities of the Code Fixer Agent. These
initiatives aim to optimize collaboration, improve accuracy, and enhance the overall user
experience through the following key areas:

● Test Agents: We are developing new stages and workflows that include environment
(i.e., sandbox) management and unit test creation and execution. These enhancements
enable the Code Fixer Agent to validate its candidate fixes more effectively, thereby
reducing reliance on the LLM-as-a-judge approach.

● Evaluation metrics: We analyze, experiment with, and develop metrics to optimize the
flow of information. We are exploring combinations of qualitative and quantitative
metrics to validate and refine the internal processes within the multi-agent workflow.

● Accessibility and ease of use: We aim to improve the tool's speed, interactions, and
feedback capabilities for our users, with a primary focus on enhancing the user
experience.

Research Opportunities
Besides our current endeavors, we have numerous open lines of research that work on the
problem of fault localization and automatic code fixing. One important area is the work we are
conducting to develop proprietary benchmarks using real-world cases. We want to establish
controlled environments where developers can engage in coding exercises that mimic actual
client scenarios. This approach allows us to test in authentic settings, evaluating our
architectures and tools in environments that closely resemble those of our clients, enhancing
the applicability of our AI Agents. Having our own benchmarks ensures that our AI Agents are
grounded in practical applicability rather than solely relying on standard benchmarks.

Another crucial area of research is exploring and experimenting with various agentic system
architectures on different types of bugs, including one-line, multi-line, and multi-file errors. We
recognize that the complexity and nature of bugs can vary significantly, and a system (or part of
it) that performs well on one type may not be as effective on another. By testing diverse
solutions across these different bug categories, we aim to:

22

● Understand the solution’s strengths and weaknesses: Identify which architectures are
best suited for specific types of bugs.

● Optimize GCFA: Tailor our agentic system to be more effective across a broader
spectrum of issues.

● Develop specialized strategies: Create or adapt our system to address the unique
challenges posed by different bug complexities.

These efforts aim to enhance the versatility and effectiveness of our Code Fixer Agent. By
continuously expanding our understanding and capabilities, we are better positioned to tackle
the diverse and complex challenges that arise in modern software development.

Long-Term Vision
Our future vision is that a diverse array of agents will undoubtedly collaborate on tedious and
time-consuming tasks across various phases of the SDLC. Currently, we are making significant
advances in areas such as requirements analysis, automatic bug reporting, localization and
fixing, test generation, code generation, and finally, automatic UX generation. Our main goal is to
create an SDLC suite for our users that enables them to work faster and with fewer errors,
providing the appropriate environment to maximize their productivity while ensuring an
enjoyable experience.

We firmly believe that by combining these diverse agents to work on a common knowledge
base, companies' digital assets will finally have the longevity and adaptability to endure over
time, evolving alongside technological advancements. By accelerating the most tedious
maintenance tasks and streamlining others, such as code generation, we can explore and
discover novel new agents and experiences across all industries.

We envision agents that remove accidental complexities in software development across all
sectors. This will not only simplify the development process but also empower businesses to
focus on innovation and deliver exceptional value to their customers. By harnessing the
collective capabilities of specialized agents, we aim to revolutionize the software development
lifecycle, making it more efficient, adaptable, and future-proof.

23

https://ai.globant.com/us-en/

Acknowledgements
We draw inspiration from various agents, whether open source or accompanied by published
research. Here are a few notable mentions:

● RepairAgent: Following their Agent design, we adopted a multi-stage strategy
(localization and fix) and were inspired by some tools related to code search.

● Aider: We followed the research shared in the community in relation to editing
benchmarks and decided to try how dividing the roles of “architect” and “editor” worked
in GCFA.

24

https://arxiv.org/pdf/2403.17134
https://aider.chat/docs/leaderboards/

Glossary

Terminology Definition

AI Artificial Intelligence

LLM Large Language Model

GCFA Globant Code Fixer Agent

GEAI Globant Enterprise AI

SDLC Software Development Life Cycle

CoT Chain-of-Thought

ToT Tree-of-Thought

PoC Proof-of-Concept

E2E End to End

SOTA State-of-the-Art

AST Abstract Syntax Tree

25

About Globant
At Globant, we create the digitally-native products that people love. We bridge the gap between
businesses and consumers through technology and creativity, leveraging our expertise in AI. We
dare to digitally transform organizations and strive to delight their customers.

● We have more than 29,900 employees and are present in 34 countries across 5
continents, working for companies like Google, Electronic Arts, and Santander, among
others.

● We were named a Worldwide Leader in AI Services (2023) and a Worldwide Leader in
CX Improvement Services (2020) by IDC MarketScape report.

● We are the fastest-growing IT brand and the 5th strongest IT brand globally (2024),
according to Brand Finance.

● We were featured as a business case study at Harvard, MIT, and Stanford.
● We are active members of The Green Software Foundation (GSF) and the

Cybersecurity Tech Accord.

Contact: pr@globant.com
Sign up to get first dibs on press news and updates.
For more information, visit www.globant.com.

26

http://www.globant.com/

