
1

November 2024

Contributors:
Martin Alejandro Bel - martinalejandro.bel@globant.com

José Lamas Ríos - jose.lamas@globant.com

Rodolfo Anibal Lobo Carrasco - rodolfo.lobo@globant.com

Juan Michelini - juan.michelini@globant.com

Gastón Milano - gaston.milano@globant.com

German Milano - german.milano@globant.com

Marcelo Pérez - ext-marcelo.perez@globant.com

Guillermo Pasquero - guillermo.pasquero@globant.com

Globant Code
Fixer Agent

mailto:martinalejandro.bel@globant.com
mailto:jose.lamas@globant.com
mailto:rodolfo.lobo@globant.com
mailto:juan.michelini@globant.com
mailto:gaston.milano@globant.com
mailto:german.milano@globant.com
mailto:ext-marcelo.perez@globant.com
mailto:guillermo.pasquero@globant.com

2

Table of Contents
Abstract 3

Overview 4

 Context and Motivation 4

 Objectives 5

The Journey of Development 6

 Genesis 6

Development Phases 7

 Phase 0: Zero-Shot Tactic 7

 Phase 1: Divide & Conquer 7

 Phase 2: In Search for Experts 8

 Phase 3: Current Solution 8

Key Decisions and Trade-offs 9

Globant Enterprise AI 10

System Architecture and Design 11

 High-Level Architecture 11

 1. Localization Stage 11

 2. Fixing Stage 12

 3. Flow Engineering 13

Core Technologies 14

 Foundation Models 14

 Frameworks and Libraries 15

Results 17

 SWE-bench 16

 Real-World Applications and Client Integration 16

Challenges and Lessons Learned 19

Roadmap 21

 Current Lines of Work 21

 Research Opportunities 21

Long-Term Vision 22

Acknowledgements 23

Glossary 24

About Globant 25

3

Abstract
In the context of the software industry, code
repair or “bug fixing” is a complex problem that
demands analysis, planning, and significant time
investment. Naturally, this task plays a critical
role in determining the speed and efficiency of
engineering teams. AI systems endowed with
significant agency, particularly those based on
Large Language Models (LLMs), and LLM-based
multi-agent systems have achieved state-of-art
results in code-fixing tasks.

In this report, we propose a multi-agent system
called Globant Code Fixer Agent (GCFA, or
simply Code Fixer Agent) developed on top of
Globant Enterprise AI (GEAI) platform. In GCFA,

multiple agents collaborate in two stages: fault
localization and bug fixing, to effectively address
the problem at hand.

We’ve developed an agentic architecture that is
intuitive for developers while prioritizing accuracy,
speed, and cost-effectiveness. The system
achieved an average of 2.65 minutes per bug at
an average cost below $1 USD per bug. Moreover,
we achieved 48.33% of resolved tickets in the
SWE-Bench Lite benchmark. This positions our
model as state-of-the-art when considering
runtime, accuracy, and cost compared to the
solutions available in the SWE community.

3

4

Overview

In today’s fast-paced software development
landscape, the demand for rapid and reliable
code delivery is ever-increasing. Code issues not
only slow down development but also impact
software quality and user satisfaction. Traditional
debugging and code review processes, while
essential, can be time-consuming and require
significant human expertise. This has paved
the way for innovative solutions that leverage
artificial intelligence to streamline and enhance
these processes.

Agentic AI Systems, characterized by their
decision-making capabilities and high agency
levels, have emerged as powerful tools for
addressing complex challenges across various
domains. The agency level of these systems

determines the degree to which they can
independently manage processes and workflows,
thereby minimizing human intervention.

In the context of the Software Development Life
Cycle (SDLC), these systems can significantly
boost efficiency. Particularly in the debugging
process, they can aid in automating and
optimizing it. Identifying patterns, analyzing
code, and proposing fixes were all part of the
Agentic AI System we wanted to build, reducing
reliance on manual intervention, and freeing
developers to focus on more strategic tasks such
as system design. This shift not only accelerates
the development cycle but also enhances code
quality by minimizing human error.

Context and Motivation

4

5

Objectives
The primary objective of our AI Agentic System is
to revolutionize the way code issues are handled
in software development. By harnessing the
power of AI, we aim to:

• Implement automatic fault localization:
Develop advanced models and tools
capable of automatically identifying the
exact location of bugs within the codebase.
Recognizing that localization is the crucial
first step in successful bug resolution, the
effort focuses on enhancing the precision
and speed of error detection.

• Enable automatic bug fixing: Leverage
foundational models and agentic workflows
to automatically generate fixes for localized
bugs. The goal is to produce effective
and efficient code corrections that can be
seamlessly integrated into real-world software
environments without creating new bugs.

• Optimize time and cost efficiency: Ensure
that both the automatic localization and fixing
processes are optimized for time and cost,
making them practical and viable solutions
for businesses. This includes reducing the

time developers spend on debugging and
lowering the overall costs associated with
software maintenance.

• Validation using industry standards but
grounded in our expertise: Set clear,
measurable standards for evaluating the
effectiveness of our solutions, ensuring a
high success rate while maintaining time
constraints and avoiding excessive brute-
force methods. Utilize industry-standard
benchmarks like SWE-Bench-Lite as tools for
objective validation, but being aware of their
many limitations1, and including our data
science expertise to evaluate results.

• Advance the SOTA in code fixing: Applied
research is at the core of Globant’s AI
Studio, and it’s deeply embedded in our
data scientists. We want to position the
Globant Code Fixer Agent, based on Globant
Enterprise AI, at the forefront of automatic
code correction technologies. By pushing the
boundaries of what’s currently possible, we
aim to set new industry standards in software
development practices.

1 SWE-Bench+: Enhanced Coding Benchmark for LLMs:
https://arxiv.org/pdf/2410.06992

5

6

The Journey of Development

Early this year, Google released a demo of Gemini
1.5 showcasing automatic code editing for a
project with a substantial number of code lines.
Significant advancements in context handling
facilitated this.

Our initial, naive approach to bug fixing involved
inserting as much code as possible into the
context window and then applying various
prompting techniques such as Chain-of-Thought
(CoT) and Tree-of-Thoughts (ToT) to generate
solutions. This method occasionally proposed
acceptable solutions for real bugs. However, we
quickly encountered several issues that set us
back to the drawing board and kept us in the lab
for months:

1. Insufficient context window size: Even with
a 1.5 million token context window, it was
inadequate for real-world codebases. Being
aware of the “Needle in a Haystack” test
results and the “Lost in the Middle” effect
potentially getting in the way, we recognized
that this wasn’t the correct approach.

Genesis
2. Performance and cost problems: Zero-shot

and few-shot prompting with such a large
context led to performance bottlenecks and
increased costs.

3. Limited output context window: While the
input context window was large, the output
context window was not proportionally
expansive.

4. Language variability limitations: Gemini
1.5 did not perform well across the board
when we started working with different
programming languages.

5. Challenges in code editing: Editing code
(still) is a significant challenge for LLMs,
requiring specialized editing strategies.

Realizing that, despite impressive demos, the
problem could not be solved with a single call
to Gemini 1.5 in its current state, we initiated an
intensive research effort.

https://www.youtube.com/watch?v=SSnsmqIj1MI
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf

7

Development Phases

As described before, the initial phase of
development focused on exploring the potential
of zero-shot bug-solving. This phase was
primarily a proof-of-concept (PoC) aimed at
demonstrating the value of providing a system
with sufficient agency to solve bugs but
without the complexity of orchestrating agentic
workflows with tool usage. We were looking to
determine whether the capabilities of existing
LLMs could meet our expectations for bug-
solving efficacy. At this stage, the goal wasn’t
to find the most efficient solution but rather to

Building on the insights gained from Phase
0, we embarked on Phase 1 with a deeper
understanding of the components necessary for
a successful AI Agentic System. We recognized
that the most effective agent systems typically
incorporate several key elements: task division,
dedicated phases for reasoning, planning,
execution, and evaluation, powerful tools, and
feedback mechanisms2. With this knowledge, we
set out to refine the system by clearly separating
responsibilities.

Inspired by other innovative solutions such as the
RepairAgent, we adopted a “divide and conquer”
strategy. This approach involved splitting the
bug-solving process into two distinct stages:
(a) localization of the bug and (b) the actual fix.
For us, this division meant we had to transition
to a multi-agent AI system, where different
agents had specialized expertise and access to

Phase 0: Zero-Shot Tactic

Phase 1: Divide & Conquer

establish that a viable solution was achievable
with the current technology. This foundational
step was crucial in validating our hypothesis
and setting the stage for more sophisticated
development efforts. At this phase, it was
essential to test different LLM model vendors.
To achieve this, we leveraged our GEAI platform,
accelerating our development process. In the
following sections, we delve deeper into the
description of this platform and how it fits into
our solution, facilitating fundamental processes
in both experimentation and development.

codebase navigation tools (e.g., gathering project
dependencies). By leveraging the strengths of
specialized agents, we achieved a significant
breakthrough, particularly in bug location, where
we achieved more than 90% accuracy at the file
level. Our E2E bug-fixing capability was around
20%, though.

This phase not only marked a quantum leap in
our bug-solving capabilities but also established
the baseline architecture for subsequent phases.
The multi-agent approach provided a robust
framework that allowed us to efficiently allocate
tasks and optimize workflows, paving the way for
further advancements in the system.

2 The Rise and Potential of Large Language Model Based
Agents: A Survey: https://arxiv.org/pdf/2309.07864

https://arxiv.org/pdf/2403.17134

8

During this phase, we embarked on an active
“search of experts” exploration, further
partitioning the fix stage and incorporating more
expert agents and control checkpoints into the
workflow. We approached this with an open
exploration mindset, embracing the idea that
almost any suggestion could have value and
recognizing that while there might not be any
magical solutions, there could be cleaner and
more efficient ones.

We experimented with different LLMs and
combinations thereof, mindful of the potential
benefits of scaling laws to enhance our
system’s performance with minimal effort. A
key difference between Phases 1 and 2 was
that in Phase 1, only the expert agents in the
localization stage had access to tools, whereas,
in Phase 2, agents primarily relied on specific
prompting techniques to propose solutions,

Phase 2: In Search of Experts
evaluate them, and edit the source files. We
realized that this tool-free approach had
limitations and would eventually plateau, but it
was essential to understand these boundaries.

The step of editing the file with the proposed
fix proved to be challenging. We tried a number
of approaches, including (a) editing the entire
source file, (b) creating a diff file, and (c) creating
a Python script to edit the file accordingly.
While exploring these methods, we encountered
significant issues with accuracy, precision, and
avoidance of unrelated changes. This challenge
led us to develop a specialized tool capable of
performing code edits, setting the foundation for
the next phase of development. This tool-based
approach not only addressed the limitations we
encountered but also enhanced the system’s
overall efficacy and robustness.

8

Our current solution implements a set of
specialized agents dedicated to the fixing stage.
These agents are responsible for proposing
solutions, which are then evaluated by a critic
agent acting as a “LLM-as-a-judge.” This
approach is complemented by code editing tools
designed to create and apply diffs, ensuring
that any changes are precise and effective.

Phase 3: Current Solution
Additionally, a retry mechanism is in place to
handle instances where a fix fails, adding a layer
of robustness to the workflow. This iterative
and adaptive strategy has refined our system’s
ability to resolve bugs efficiently and consistently,
positioning it as a cutting-edge solution in the
realm of AI-driven software development.

9

Key Decisions and Trade-offs
During the development of GCFA, our main driver
was the desire to iterate rapidly and learn quickly—a
principle that should be at the core of any data
science team. This agile approach allowed us
to adapt swiftly to new insights and challenges,
ensuring that our architecture remained robust
and responsive to evolving needs.

To validate our solution, we tested it across various
teams within the company, gathering feedback not
only on its performance but also on its usability.
This user-centric evaluation was crucial in
shaping a solution that aligns with real-world
demands and enhances the user experience.

Several key decisions were pivotal in our
development process:

• Architecture type: Selecting the right
architecture was fundamental. We explored
various configurations to determine which
would offer the optimal balance between
complexity and functionality.

• Conversation patterns: We considered
different conversation patterns for agent
interactions. Finding the right communication
strategy was critical to ensuring proper
collaboration among agents, enabling them
to perform their tasks as best as possible.

• Tool selection and utilization: Another
critical decision was which tools to integrate
and how many each agent should use. The
effectiveness of each development stage
depended on equipping agents with the right
tools to perform their specialized tasks.

• Integration of AI Agents by using GEAI: This
approach was essential to avoid spending
excessive time on inference, model hosting,
and associated complexities. Regarding
FinOps capabilities, GEAI enables you to
set spending limits and execution time
constraints, which in our case, ensured that
our Code Fixer Agent remained cost-effective
and efficient. By implementing these controls,
we could manage resources effectively while
maintaining high performance. GEAI ensures
that data flows remain within the boundaries
of Globant, adhering to strict data privacy and
security policies. This containment is crucial
for maintaining trust and responsibility in
our AI applications, as it prevents sensitive
information from leaving the organization’s
controlled environment. On top of GEAI,
numerous agents are being developed for
various specific industries. Particularly for the
SDLC, where one key application is our Code
Fixer Agent. By leveraging GEAI, these agents
can be customized to meet the specific
needs of different industries and processes,
enhancing efficiency and effectiveness.

As with any AI Agentic system, the selection
of a foundation model (particularly LLMs) was
also part of the key decision-making process. We
leveraged GEAI to test our agent strategy with
several models from different providers, including
Gemini 1.5, Gemini 1.5 Flash, Claude 3.5 Sonnet
(v1 and v2), GPT-4, GPT-4o, o1-mini, o1-preview,
and the LLaMA family of models. GEAI provided
the much-needed flexibility, which saved us
the burden and overhead of managing multiple
models manually.

9

10

We found that our current system implementation
yields the best results using Claude 3.5 Sonnet3
for our specific use case.

Even with guidelines from the broader AI
community, the solution space is just too vast,
and it is impossible to traverse it all. So, we
conducted extensive research to understand
what might best suit our use case, examined
what others were doing in the field, and last

but not least, tested (and failed!) a lot. Each
discarded approach provided information and
brought us closer to our current solution.

We remain committed to this iterative, research-
driven approach. As we continue to develop and
enhance our system, applied research will remain
a cornerstone of our strategy and, hopefully, allow
us to evolve our solution to meet the challenges
of AI-driven software development.

Globant Enterprise AI
Globant Enterprise AI (GEAI) serves as the
umbrella under which Globant’s strategy for the
adoption, integration, and creation of AI Agents
is established. It is the foundational platform
that supports and accelerates the iterative
development, evaluation, and deployment of
Generative AI solutions across the organization
and its clients.

One of GEAI’s most important features is its
multi-cloud capability. This allows you to install
AI Agent solutions on any cloud provider—be

it Google Cloud Platform (GCP), Amazon Web
Services (AWS), Microsoft Azure, or even on-
premises. This is an essential aspect because
the platform we envision is designed to run in any
enterprise environment, regardless of where their
infrastructure is hosted. This flexibility ensures
that our clients can adopt our platform without
being constrained by their existing cloud setups.

3 Claude 3.5 Sonnet (2024-10-24 snapshot)

10

https://ai.globant.com/us-en/

11

System Architecture and Design

The Code Fixer Agent system is a two-stage, multi-agent system. The following describes the
different stages of the multi-agent system that enable code repair.

Task: Diagnose the bug.

Generate Asset: A localization report.

In this stage, a set of agents with access to
tools navigates the codebase and searches for
candidate files that may be causing the bug.
These are the files that will be passed to the next
stage as input. Once the candidates are found, a

Available tools:
• read_file: Reads the entire file and returns its

contents as a list of lines.

• search_file: Searches for a specific file in a
directory and returns the path.

• search_methods_in_file: Searches for methods
content in the specified file.

• get_related_files: Get related files to the
specified file. Useful when you find a suspect
file to get more related files.

High-Level Architecture

1. Localization Stage

report that describes the main causes of the bug
is generated. This report serves two purposes:
it provides the user with insight into the model’s
functionality and acts as input for the fix stage.

Figure 1. High-level Agentic architecture of automatic bug localization stage of Globant Code Fixer Agent.

• search_codebase: Recursively searches for
specific terms in all files within a directory,
options to search_option “exact” or “fuzzy” or
“all words” or “some word.”

• search_code_in_file: Searches for a specific
term in a file and returns the matching tokens.

• detect_language_and_get_dependencies: Detect
the programming language of the project and
extract dependencies.

11

12

Task: Fix the bug using the localization report.

Generate Asset: A patch file containing the code fixes.

A robust configuration of three specialized agents
is employed at this stage, working collaboratively
to address the identified issues. The agents are
defined as follows:

• Architect Agent: Generates solution
proposals based on the bug localization
report and contextual understanding of the
codebase. This agent utilizes foundational
models to draft fixes aligned with coding best
practices and project specifications.

• Editor Agent: Implements the proposed
solution by modifying the source code.
Equipped with tool integrations, the Editor
Agent ensures high accuracy in executing the
Architect Agent’s proposal, addressing both
syntactical and logical correctness.

2. Fixing Stage

• Critic Agent: Evaluates the implemented
solution for correctness and alignment with
the intended fix. If the solution is deemed
unsatisfactory, it triggers a retry loop,
prompting the agents to refine the fix.

The retry mechanism is a cornerstone of the
system, enabling iterative improvements until
an acceptable solution is achieved. Each retry
leverages feedback from the Critic Agent to
guide the Architect and Editor Agents in refining
their outputs.

Such a multi-agent, multi-stage approach
ensures efficient and accurate bug detection and
resolution, streamlining the software development
process and enhancing code quality.

Figure 2. High-level Agentic architecture of the fixing stage of Globant Code Fixer Agent.

12

1313

Code Fixer’s performance hinges on its flow
engineering—the orchestration of data and task
execution among agents—and the strategic
use of tools designed to augment the agents’
capabilities. Key aspects include:

• Return values design: Tools are configured to
provide structured and actionable feedback to
the agents, enabling them to make informed
decisions.

3. Flow Engineering
• LLM-enhanced tooling: Traditional software

tools are seamlessly integrated with LLMs to
optimize the localization and fixing process,
ensuring scalability and precision.

Designed with a modular and extensible
structure, the architecture allows for the
seamless integration of new tools, techniques,
or agents to tackle evolving challenges in
software development.

14

Core Technologies

As mentioned before, we’ve tested several
foundation models in different combinations.
These are an essential part of the research
and development process. Here’s a non-
comprehensive list of the ones we evaluated:

• Claude Sonnet 3.5: a SOTA language model
available in two versions, is designed for
efficient text understanding and generation,
enabling nuanced comprehension and
communication. It has been utilized for
most of the agents described in System
Architecture and Design since it has shown
the best coding capabilities given our
workflow.

Foundation Models
• GPT-4o, o1-preview, Gemini 1.5, Llama-3.1:

These models were incorporated at various
stages of our research. Each model was
selected and evaluated based on its specific
strengths, contributing to different aspects
of language processing, code analysis,
and iterative problem-solving. Some of
them were tested out of curiosity about
their performance, knowing that they may
not be ready for a productive environment.
Currently, we use GPT-4o as a fallback for
Sonnet. This setup is designed to handle
situations where Sonnet may be unavailable,
such as when a rate limit is reached, thereby
enhancing system robustness at the cost of
some performance.

• GPT-4o mini: Used primarily in GCFA’s CLI,
the model excels in quick and precise code
modifications, supporting the system’s
debugging and code refinement processes.

The implementation of GCFA relies on foundation models and robust frameworks to ensure high
performance and adaptability across a range of tasks. By integrating SOTA technologies, we
have developed a system that not only meets the demands of complex problem-solving but also
provides an intuitive user experience.

14

https://www.anthropic.com/claude/sonnet
https://docs.google.com/document/d/1NNrc29MmBlrwhgaEq0vC2d3Tv4JH1TW2mZW6_PyyFV8/edit?pli=1&tab=t.0#heading=h.9gj0nf7yl4b3
https://docs.google.com/document/d/1NNrc29MmBlrwhgaEq0vC2d3Tv4JH1TW2mZW6_PyyFV8/edit?pli=1&tab=t.0#heading=h.9gj0nf7yl4b3
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#o1
https://ai.google.dev/gemini-api/docs/models/gemini
https://ai.meta.com/blog/meta-llama-3-1/
https://platform.openai.com/docs/models#gpt-4o-mini

1515

To support the diverse functionalities of our
system, we have integrated several awesome
frameworks and libraries. The ones to highlight
are the following:

• AutoGen: A framework that facilitates
automated workflows, Autogen enables
seamless execution of tasks such as
testing, debugging, and report generation
with minimal manual intervention. It
emerged as our top pick among several
possible agent frameworks. It allows us
to create conversation patterns between
agents fairly easily. We’re currently using
v0.2 but are planning to migrate to v0.4
once it’s stable enough.

• Tree-sitter: Since we’re dealing with
codebases, we needed to create tools for
our agents that could create and traverse
ASTs—tree-sitter was our top-of-mind
for this. As a parser generator tool and
incremental parsing library, it is essential
for code analysis and manipulation. Tree-
sitter provides the structural analysis
needed to understand and process source
code efficiently, forming a backbone for the
system’s code-related tasks.

Frameworks and Libraries

• Chameleon: A GeneXus library of white-
label, highly customizable, and reusable
web components, Chameleon serves as
the foundation for visualization and end-
user interaction. It supports the creation
of a dynamic and adaptable user interface,
facilitating a more intuitive and accessible
experience for users interacting with AI agents.

This combination of foundation models and
frameworks underpins the system’s ability
to deliver high performance and adaptability,
ensuring that it remains at the forefront of AI-
driven innovation.

https://microsoft.github.io/autogen/0.2/
https://tree-sitter.github.io/tree-sitter/
https://www.npmjs.com/package/@genexus/chameleon-controls-library
https://www.genexus.com/en/

16

Results

SWE-bench is a benchmark designed to evaluate
codebase problems using verifiable in-repo unit
tests. The full dataset contains 2,294 issue-
commit pairs across 12 Python repositories,
offering diverse and challenging evaluation
tasks for long-term assessments of language
models (LMs). However, the complexity and
computational demands of the SWE-bench have
posed challenges for systems aiming for short-
term progress. To address this, SWE-bench Lite
was introduced as a streamlined, canonical
subset of 300 instances focused on functional
bug fixes. This subset maintains the diversity
and distribution of repositories in the original
dataset, covering 11 of the 12 repositories.

Our work extends beyond achieving high
performance on benchmarks; we are actively
deploying our solution in real-world client
scenarios. The localization phase is extremely
important because it guides our teams to the
precise areas in the codebase where issues
reside. Accurate fault localization empowers
developers to focus their efforts effectively,
significantly reducing the time spent on
debugging and enhancing overall productivity.

We have integrated our system with industry-
standard tools like Jira, incorporating a
preliminary phase of problem understanding
before initiating localization. This integration

SWE-bench

Real-world Applications and Client Integration

An additional 23 development instances were
curated to aid active development on SWE-
bench tasks. Our results are being evaluated
using SWE-bench Lite,
consistently achieving outcomes that position
us among the top-performing or SOTA solutions
globally, with 48.33% of solved tickets.

The submission of results in SWE-bench
requires the publication of the agents’ internal
states to verify the logical process of ticket
resolution through logs and trajectories.
For more information, you can refer to the
results published by competitors on the SWE
benchmark website.

allows us to extract contextual information from
issue reports, enabling a more informed and
targeted localization process. By understanding
the problem’s context through Jira tickets, our
solution can provide more accurate and relevant
localization results, streamlining the transition
from issue identification to resolution.

We believe that automatic fixing will
transform many workflows within the software
development lifecycle. To accommodate diverse
user needs and integrate seamlessly into
existing processes, we have developed three
modes of interaction with our code fixer:

16

https://www.swebench.com/lite.html
https://www.swebench.com/
https://www.swebench.com/

1717

1) Batch Mode: Used primarily for running
benchmarks, this mode allows for the
automated processing of multiple fixes without
user intervention. It’s ideal for large-scale
codebases and continuous integration pipelines
where efficiency is paramount.

2) Chat Command Line Interface: This mode
facilitates integration with tools like Copilot and
other IDE assistants. Developers can interact
with the code fixer through command-line
prompts within their development environment,
making it a convenient option for those who
prefer a more hands-on approach.

Figure 3. Screenshot of GCFA’s chat command line interface.

18

3) Web Interface: We have created a web-
based interface that enables users to monitor
the progress of code fixing in real time.
This interface combines a visual client with
conversational capabilities, allowing for iterative
interactions and providing a transparent view of
the fixing process.

Figure 4. Screenshot of GCFA’s web interface.

• By offering multiple interaction methods,
we ensure that our solution is flexible
and adaptable to various development
workflows. Whether through automated
batch processing, command-line
interactions, or a user-friendly web
interface, our code fixer integrates

seamlessly into the developer’s toolkit. This
versatility not only enhances productivity
but also facilitates efficient bug resolution
in real-world applications, affirming our
commitment to delivering practical and
impactful agents for our clients.

1919

1. Context window limitations: Managing
various context windows was a considerable
hurdle. Despite advances that allow for
larger context windows—even those
exceeding a million tokens—they quickly
become insufficient for real-world projects
with extensive codebases. Utilizing these
large contexts can be inefficient and costly,
particularly concerning response times,
even after implementing optimizations like
prompt caching.

2. Necessity of an agentic solution: Ensuring
the need for an agentic solution, where
iterative loops take precedence over simple
few-shot prompting, became an area of
continuous evolution. Relying solely on
few-shot prompting proved inadequate for
complex tasks. Developing a loop-based,
agent-driven approach allowed for more
nuanced and effective problem-solving but
required significant research and refinement.

3. Integrating diverse agent frameworks
with various models: We encountered
challenges in harmonizing different agent
frameworks with the specific requirements
of each language model. Some models,
like o1, do not support system prompts,
while others have limitations regarding
message role sequences or tool usage.

Throughout the development of GCFA, we faced several significant challenges:

This required meticulous adjustments and
customizations to ensure compatibility
and optimal performance across different
models and frameworks.

4. Navigating model guardrails: Dealing with
the guardrails implemented in certain models
was also a challenge. These built-in safety
features sometimes restricted the models
from performing desired actions, requiring us
to find workarounds without compromising
ethical guidelines or model integrity. This
involved careful prompt engineering and, at
times, selecting alternative models better
suited to our needs.

5. Generating successful code edits:
Facilitating successful edits to code files
proved difficult. In their current state, large
language models (LLMs) without specialized
tools struggle to perform precise code editing
tasks. The challenge underscored the need
for strategies and tools to enhance LLMs’
capabilities in code manipulation, such
as incorporating external code editors or
developing specialized editing prompts.

Challenges and Lessons Learned

2020

6. Cross-language support: Another significant
challenge was developing a solution that is
cross-language compatible. Our goal was
not only to target Python but to support a
wide range of programming languages. The
solution we achieved supports numerous
languages, including:

• Primary Languages Tested: Python, Java,
C#, JavaScript, TypeScript.

• Additional Supported Languages: Delphi,
ELisp, Go, Guile, Haskell, Julia, Kotlin, Lua,
OCaml, Odin, Perl, R, Ruby, Rust, Swift.

7. Tooling: Developing tools to handle the
syntactic and semantic nuances of diverse
programming languages required significant
effort. Our models and frameworks needed
to parse, analyze, and modify code across
various paradigms. While testing focused on
Python, Java, C#, JavaScript, and TypeScript,
expanding support involved addressing
challenges such as language-specific syntax,
standard libraries and frameworks, and
adapting tooling and compilation pipelines for
different languages.

These challenges underscored the complexity
of developing an effective automatic code-fixing
solution that is versatile and scalable across
multiple programming languages.

21

Roadmap

Our ongoing efforts are focused on advancing
the capabilities of the Code Fixer Agent.
These initiatives aim to optimize collaboration,
improve accuracy, and enhance the overall user
experience through the following key areas:

• Test Agents: We are developing new stages
and workflows that include environment (i.e.,
sandbox) management and unit test creation
and execution. These enhancements enable
the Code Fixer Agent to validate its candidate
fixes more effectively, thereby reducing
reliance on the LLM-as-a-judge approach.

Current Lines of Work

• Evaluation metrics: We analyze, experiment
with, and develop metrics to optimize
the flow of information. We are exploring
combinations of qualitative and quantitative
metrics to validate and refine the internal
processes within the multi-agent workflow.

• Accessibility and ease of use: We aim to
improve the tool’s speed, interactions, and
feedback capabilities for our users, with
a primary focus on enhancing the user
experience.

Besides our current endeavors, we have numerous
open lines of research that work on the problem
of fault localization and automatic code fixing.
One important area is the work we are conducting
to develop proprietary benchmarks using real-
world cases. We want to establish controlled
environments where developers can engage in
coding exercises that mimic actual client scenarios.
This approach allows us to test in authentic
settings, evaluating our architectures and tools
in environments that closely resemble those of
our clients, enhancing the applicability of our AI
Agents. Having our own benchmarks ensures that
our AI Agents are grounded in practical applicability
rather than solely relying on standard benchmarks.

Research Opportunities
Another crucial area of research is exploring
and experimenting with various agentic system
architectures on different types of bugs, including
one-line, multi-line, and multi-file errors. We
recognize that the complexity and nature of bugs
can vary significantly, and a system (or part of
it) that performs well on one type may not be as
effective on another. By testing diverse solutions
across these different bug categories, we aim to:

21

22

Long-Term Vision

• Understand the solution’s strengths and
weaknesses: Identify which architectures are
best suited for specific types of bugs.

• Optimize GCFA: Tailor our agentic system to
be more effective across a broader spectrum
of issues.

• Develop specialized strategies: Create
or adapt our system to address the
unique challenges posed by different bug
complexities.

These efforts aim to enhance the versatility
and effectiveness of our Code Fixer Agent. By
continuously expanding our understanding and
capabilities, we are better positioned to tackle
the diverse and complex challenges that arise in
modern software development.

Our future vision is that a diverse array of agents
will undoubtedly collaborate on tedious and
time-consuming tasks across various phases of
the SDLC. Currently, we are making significant
advances in areas such as requirements
analysis, automatic bug reporting, localization
and fixing, test generation, code generation,
and finally, automatic UX generation. Our main
goal is to create an SDLC suite for our users
that enables them to work faster and with fewer
errors, providing the appropriate environment to
maximize their productivity while ensuring an
enjoyable experience.

We firmly believe that by combining these diverse
agents to work on a common knowledge base,
companies’ digital assets will finally have the

longevity and adaptability to endure over time,
evolving alongside technological advancements.
By accelerating the most tedious maintenance
tasks and streamlining others, such as code
generation, we can explore and discover novel
new agents and experiences across all industries.

We envision agents that remove accidental
complexities in software development across
all sectors. This will not only simplify the
development process but also empower
businesses to focus on innovation and
deliver exceptional value to their customers.
By harnessing the collective capabilities of
specialized agents, we aim to revolutionize the
software development lifecycle, making it more
efficient, adaptable, and future-proof.

22

https://ai.globant.com/us-en/

23

Acknowledgements

• RepairAgent: Following their Agent design, we
adopted a multi-stage strategy (localization
and fix) and were inspired by some tools
related to code search.

We draw inspiration from various agents, whether open source or accompanied by published research.
Here are a few notable mentions:

• Aider: We followed the research shared in the
community in relation to editing benchmarks
and decided to try how dividing the roles of
“architect” and “editor” worked in GCFA.

23

https://arxiv.org/pdf/2403.17134
https://aider.chat/docs/leaderboards/

24

Glossary
Terminology Definition

AI Artificial Intelligence

LLM Large Language Model

GCFA Globant Code Fixer Agent

GEAI Globant Enterprise AI

SDLC Software Development Life Cycle

CoT Chain-of-Thought

ToT Tree-of-Thought

PoC Proof-of-Concept

E2E End to End

SOTA State-of-the-Art

AST Abstract Syntax Tree

24

25

About Globant
At Globant, we create the digitally-native products that people love. We bridge the gap between
businesses and consumers through technology and creativity, leveraging our expertise in AI.
We dare to digitally transform organizations and strive to delight their customers.

• We have more than 29,900 employees and are present in 34 countries across 5
continents, working for companies like Google, Electronic Arts, and Santander,
among others.

• We were named a Worldwide Leader in AI Services (2023) and a Worldwide Leader
in CX Improvement Services (2020) by IDC MarketScape report.

• We are the fastest-growing IT brand and the 5th strongest IT brand globally (2024),
according to Brand Finance.

• We were featured as a business case study at Harvard, MIT, and Stanford.

• We are active members of The Green Software Foundation (GSF) and the
Cybersecurity Tech Accord.

For more information, visit www.globant.com

25

http://www.globant.com

26

