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Abstract
In the context of the software industry, code 
repair or “bug fixing” is a complex problem that 
demands analysis, planning, and significant time 
investment. Naturally, this task plays a critical 
role in determining the speed and efficiency of 
engineering teams. AI systems endowed with 
significant agency, particularly those based on 
Large Language Models (LLMs), and LLM-based 
multi-agent systems have achieved state-of-art 
results in code-fixing tasks.

In this report, we propose a multi-agent system 
called Globant Code Fixer Agent (GCFA, or 
simply Code Fixer Agent) developed on top of 
Globant Enterprise AI (GEAI) platform. In GCFA, 

multiple agents collaborate in two stages: fault 
localization and bug fixing, to effectively address 
the problem at hand.

We’ve developed an agentic architecture that is 
intuitive for developers while prioritizing accuracy, 
speed, and cost-effectiveness. The system 
achieved an average of 2.65 minutes per bug at 
an average cost below $1 USD per bug. Moreover, 
we achieved 48.33% of resolved tickets in the 
SWE-Bench Lite benchmark. This positions our 
model as state-of-the-art when considering 
runtime, accuracy, and cost compared to the 
solutions available in the SWE community.

3



4

Overview

In today’s fast-paced software development 
landscape, the demand for rapid and reliable 
code delivery is ever-increasing. Code issues not 
only slow down development but also impact 
software quality and user satisfaction. Traditional 
debugging and code review processes, while 
essential, can be time-consuming and require 
significant human expertise. This has paved 
the way for innovative solutions that leverage 
artificial intelligence to streamline and enhance 
these processes.

Agentic AI Systems, characterized by their 
decision-making capabilities and high agency 
levels, have emerged as powerful tools for 
addressing complex challenges across various 
domains. The agency level of these systems 

determines the degree to which they can 
independently manage processes and workflows, 
thereby minimizing human intervention.

In the context of the Software Development Life 
Cycle (SDLC), these systems can significantly 
boost efficiency. Particularly in the debugging 
process, they can aid in automating and 
optimizing it. Identifying patterns, analyzing 
code, and proposing fixes were all part of the 
Agentic AI System we wanted to build, reducing 
reliance on manual intervention, and freeing 
developers to focus on more strategic tasks such 
as system design. This shift not only accelerates 
the development cycle but also enhances code 
quality by minimizing human error.

Context and Motivation
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Objectives
The primary objective of our AI Agentic System is 
to revolutionize the way code issues are handled 
in software development. By harnessing the 
power of AI, we aim to:

• Implement automatic fault localization: 
Develop advanced models and tools 
capable of automatically identifying the 
exact location of bugs within the codebase. 
Recognizing that localization is the crucial 
first step in successful bug resolution, the 
effort focuses on enhancing the precision 
and speed of error detection. 

• Enable automatic bug fixing: Leverage 
foundational models and agentic workflows 
to automatically generate fixes for localized 
bugs. The goal is to produce effective 
and efficient code corrections that can be 
seamlessly integrated into real-world software 
environments without creating new bugs. 

• Optimize time and cost efficiency: Ensure 
that both the automatic localization and fixing 
processes are optimized for time and cost, 
making them practical and viable solutions 
for businesses. This includes reducing the 

time developers spend on debugging and 
lowering the overall costs associated with 
software maintenance. 

• Validation using industry standards but 
grounded in our expertise: Set clear, 
measurable standards for evaluating the 
effectiveness of our solutions, ensuring a 
high success rate while maintaining time 
constraints and avoiding excessive brute-
force methods. Utilize industry-standard 
benchmarks like SWE-Bench-Lite as tools for 
objective validation, but being aware of their 
many limitations1, and including our data 
science expertise to evaluate results.  

• Advance the SOTA in code fixing: Applied 
research is at the core of Globant’s AI 
Studio, and it’s deeply embedded in our 
data scientists. We want to position the 
Globant Code Fixer Agent, based on Globant 
Enterprise AI, at the forefront of automatic 
code correction technologies. By pushing the 
boundaries of what’s currently possible, we 
aim to set new industry standards in software 
development practices.

1 SWE-Bench+: Enhanced Coding Benchmark for LLMs: 
https://arxiv.org/pdf/2410.06992
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The Journey of Development

Early this year, Google released a demo of Gemini 
1.5 showcasing automatic code editing for a 
project with a substantial number of code lines. 
Significant advancements in context handling 
facilitated this.

Our initial, naive approach to bug fixing involved 
inserting as much code as possible into the 
context window and then applying various 
prompting techniques such as Chain-of-Thought 
(CoT) and Tree-of-Thoughts (ToT) to generate 
solutions. This method occasionally proposed 
acceptable solutions for real bugs. However, we 
quickly encountered several issues that set us 
back to the drawing board and kept us in the lab 
for months:

1. Insufficient context window size: Even with 
a 1.5 million token context window, it was 
inadequate for real-world codebases. Being 
aware of the “Needle in a Haystack” test 
results and the “Lost in the Middle” effect 
potentially getting in the way, we recognized 
that this wasn’t the correct approach. 

Genesis
2. Performance and cost problems: Zero-shot 

and few-shot prompting with such a large 
context led to performance bottlenecks and 
increased costs. 

3. Limited output context window: While the 
input context window was large, the output 
context window was not proportionally 
expansive. 

4. Language variability limitations: Gemini 
1.5 did not perform well across the board 
when we started working with different 
programming languages. 

5. Challenges in code editing: Editing code 
(still) is a significant challenge for LLMs, 
requiring specialized editing strategies. 

Realizing that, despite impressive demos, the 
problem could not be solved with a single call 
to Gemini 1.5 in its current state, we initiated an 
intensive research effort.

https://www.youtube.com/watch?v=SSnsmqIj1MI
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
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Development Phases

As described before, the initial phase of 
development focused on exploring the potential 
of zero-shot bug-solving. This phase was 
primarily a proof-of-concept (PoC) aimed at 
demonstrating the value of providing a system 
with sufficient agency to solve bugs but 
without the complexity of orchestrating agentic 
workflows with tool usage. We were looking to 
determine whether the capabilities of existing 
LLMs could meet our expectations for bug-
solving efficacy. At this stage, the goal wasn’t 
to find the most efficient solution but rather to 

Building on the insights gained from Phase 
0, we embarked on Phase 1 with a deeper 
understanding of the components necessary for 
a successful AI Agentic System. We recognized 
that the most effective agent systems typically 
incorporate several key elements: task division, 
dedicated phases for reasoning, planning, 
execution, and evaluation, powerful tools, and 
feedback mechanisms2. With this knowledge, we 
set out to refine the system by clearly separating 
responsibilities.

Inspired by other innovative solutions such as the 
RepairAgent, we adopted a “divide and conquer” 
strategy. This approach involved splitting the 
bug-solving process into two distinct stages: 
(a) localization of the bug and (b) the actual fix. 
For us, this division meant we had to transition 
to a multi-agent AI system, where different 
agents had specialized expertise and access to 

Phase 0: Zero-Shot Tactic

Phase 1: Divide & Conquer

establish that a viable solution was achievable 
with the current technology. This foundational 
step was crucial in validating our hypothesis 
and setting the stage for more sophisticated 
development efforts. At this phase, it was 
essential to test different LLM model vendors. 
To achieve this, we leveraged our GEAI platform, 
accelerating our development process. In the 
following sections, we delve deeper into the 
description of this platform and how it fits into 
our solution, facilitating fundamental processes 
in both experimentation and development.

codebase navigation tools (e.g., gathering project 
dependencies). By leveraging the strengths of 
specialized agents, we achieved a significant 
breakthrough, particularly in bug location, where 
we achieved more than 90% accuracy at the file 
level. Our E2E bug-fixing capability was around 
20%, though.

This phase not only marked a quantum leap in 
our bug-solving capabilities but also established 
the baseline architecture for subsequent phases. 
The multi-agent approach provided a robust 
framework that allowed us to efficiently allocate 
tasks and optimize workflows, paving the way for 
further advancements in the system.

2 The Rise and Potential of Large Language Model Based 
Agents: A Survey: https://arxiv.org/pdf/2309.07864

https://arxiv.org/pdf/2403.17134
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During this phase, we embarked on an active 
“search of experts” exploration, further 
partitioning the fix stage and incorporating more 
expert agents and control checkpoints into the 
workflow. We approached this with an open 
exploration mindset, embracing the idea that 
almost any suggestion could have value and 
recognizing that while there might not be any 
magical solutions, there could be cleaner and 
more efficient ones.

We experimented with different LLMs and 
combinations thereof, mindful of the potential 
benefits of scaling laws to enhance our 
system’s performance with minimal effort. A 
key difference between Phases 1 and 2 was 
that in Phase 1, only the expert agents in the 
localization stage had access to tools, whereas, 
in Phase 2, agents primarily relied on specific 
prompting techniques to propose solutions, 

Phase 2: In Search of Experts
evaluate them, and edit the source files. We 
realized that this tool-free approach had 
limitations and would eventually plateau, but it 
was essential to understand these boundaries.

The step of editing the file with the proposed 
fix proved to be challenging. We tried a number 
of approaches, including (a) editing the entire 
source file, (b) creating a diff file, and (c) creating 
a Python script to edit the file accordingly. 
While exploring these methods, we encountered 
significant issues with accuracy, precision, and 
avoidance of unrelated changes. This challenge 
led us to develop a specialized tool capable of 
performing code edits, setting the foundation for 
the next phase of development. This tool-based 
approach not only addressed the limitations we 
encountered but also enhanced the system’s 
overall efficacy and robustness.

8

Our current solution implements a set of 
specialized agents dedicated to the fixing stage. 
These agents are responsible for proposing 
solutions, which are then evaluated by a critic 
agent acting as a “LLM-as-a-judge.” This 
approach is complemented by code editing tools 
designed to create and apply diffs, ensuring 
that any changes are precise and effective. 

Phase 3: Current Solution
Additionally, a retry mechanism is in place to 
handle instances where a fix fails, adding a layer 
of robustness to the workflow. This iterative 
and adaptive strategy has refined our system’s 
ability to resolve bugs efficiently and consistently, 
positioning it as a cutting-edge solution in the 
realm of AI-driven software development.



9

Key Decisions and Trade-offs
During the development of GCFA, our main driver 
was the desire to iterate rapidly and learn quickly—a 
principle that should be at the core of any data 
science team. This agile approach allowed us 
to adapt swiftly to new insights and challenges, 
ensuring that our architecture remained robust 
and responsive to evolving needs. 

To validate our solution, we tested it across various 
teams within the company, gathering feedback not 
only on its performance but also on its usability. 
This user-centric evaluation was crucial in 
shaping a solution that aligns with real-world 
demands and enhances the user experience.

Several key decisions were pivotal in our 
development process:

• Architecture type: Selecting the right 
architecture was fundamental. We explored 
various configurations to determine which 
would offer the optimal balance between 
complexity and functionality. 

• Conversation patterns: We considered 
different conversation patterns for agent 
interactions. Finding the right communication 
strategy was critical to ensuring proper 
collaboration among agents, enabling them 
to perform their tasks as best as possible. 

• Tool selection and utilization: Another 
critical decision was which tools to integrate 
and how many each agent should use. The 
effectiveness of each development stage 
depended on equipping agents with the right 
tools to perform their specialized tasks.

• Integration of AI Agents by using GEAI:  This 
approach was essential to avoid spending 
excessive time on inference, model hosting, 
and associated complexities. Regarding 
FinOps capabilities, GEAI enables you to 
set spending limits and execution time 
constraints, which in our case, ensured that 
our Code Fixer Agent remained cost-effective 
and efficient. By implementing these controls, 
we could manage resources effectively while 
maintaining high performance. GEAI ensures 
that data flows remain within the boundaries 
of Globant, adhering to strict data privacy and 
security policies. This containment is crucial 
for maintaining trust and responsibility in 
our AI applications, as it prevents sensitive 
information from leaving the organization’s 
controlled environment. On top of GEAI, 
numerous agents are being developed for 
various specific industries. Particularly for the 
SDLC, where one key application is our Code 
Fixer Agent. By leveraging GEAI, these agents 
can be customized to meet the specific 
needs of different industries and processes, 
enhancing efficiency and effectiveness.

As with any AI Agentic system, the selection 
of a foundation model (particularly LLMs) was 
also part of the key decision-making process. We 
leveraged GEAI to test our agent strategy with 
several models from different providers, including 
Gemini 1.5, Gemini 1.5 Flash, Claude 3.5 Sonnet 
(v1 and v2), GPT-4, GPT-4o, o1-mini, o1-preview, 
and the LLaMA family of models. GEAI provided 
the much-needed flexibility, which saved us 
the burden and overhead of managing multiple 
models manually.

9
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We found that our current system implementation 
yields the best results using Claude 3.5 Sonnet3 
for our specific use case.

Even with guidelines from the broader AI 
community, the solution space is just too vast, 
and it is impossible to traverse it all. So, we 
conducted extensive research to understand 
what might best suit our use case, examined 
what others were doing in the field, and last 

but not least, tested (and failed!) a lot. Each 
discarded approach provided information and 
brought us closer to our current solution.

We remain committed to this iterative, research-
driven approach. As we continue to develop and 
enhance our system, applied research will remain 
a cornerstone of our strategy and, hopefully, allow 
us to evolve our solution to meet the challenges 
of AI-driven software development.

Globant Enterprise AI
Globant Enterprise AI (GEAI) serves as the 
umbrella under which Globant’s strategy for the 
adoption, integration, and creation of AI Agents 
is established. It is the foundational platform 
that supports and accelerates the iterative 
development, evaluation, and deployment of 
Generative AI solutions across the organization 
and its clients.

One of GEAI’s most important features is its 
multi-cloud capability. This allows you to install 
AI Agent solutions on any cloud provider—be 

it Google Cloud Platform (GCP), Amazon Web 
Services (AWS), Microsoft Azure, or even on-
premises. This is an essential aspect because 
the platform we envision is designed to run in any 
enterprise environment, regardless of where their 
infrastructure is hosted. This flexibility ensures 
that our clients can adopt our platform without 
being constrained by their existing cloud setups.

3 Claude 3.5 Sonnet (2024-10-24 snapshot)

10

https://ai.globant.com/us-en/
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System Architecture and Design

The Code Fixer Agent system is a two-stage, multi-agent system. The following describes the 
different stages of the multi-agent system that enable code repair.

Task: Diagnose the bug.

Generate Asset:  A localization report.

In this stage, a set of agents with access to 
tools navigates the codebase and searches for 
candidate files that may be causing the bug. 
These are the files that will be passed to the next 
stage as input. Once the candidates are found, a 

Available tools:
• read_file: Reads the entire file and returns its 

contents as a list of lines.

• search_file: Searches for a specific file in a 
directory and returns the path.

• search_methods_in_file: Searches for methods 
content in the specified file.

• get_related_files: Get related files to the 
specified file. Useful when you find a suspect 
file to get more related files. 

High-Level Architecture

1. Localization Stage

report that describes the main causes of the bug 
is generated. This report serves two purposes: 
it provides the user with insight into the model’s 
functionality and acts as input for the fix stage.

Figure 1.  High-level Agentic architecture of automatic bug localization stage of Globant Code Fixer Agent. 

• search_codebase: Recursively searches for 
specific terms in all files within a directory, 
options to search_option “exact” or “fuzzy” or 
“all words” or “some word.”

• search_code_in_file: Searches for a specific 
term in a file and returns the matching tokens.

• detect_language_and_get_dependencies: Detect 
the programming language of the project and 
extract dependencies.

11
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Task: Fix the bug using the localization report.

Generate Asset:  A patch file containing the code fixes.

A robust configuration of three specialized agents 
is employed at this stage, working collaboratively 
to address the identified issues. The agents are 
defined as follows:

• Architect Agent: Generates solution 
proposals based on the bug localization 
report and contextual understanding of the 
codebase. This agent utilizes foundational 
models to draft fixes aligned with coding best 
practices and project specifications.

• Editor Agent: Implements the proposed 
solution by modifying the source code. 
Equipped with tool integrations, the Editor 
Agent ensures high accuracy in executing the 
Architect Agent’s proposal, addressing both 
syntactical and logical correctness. 

2. Fixing Stage

• Critic Agent: Evaluates the implemented 
solution for correctness and alignment with 
the intended fix. If the solution is deemed 
unsatisfactory, it triggers a retry loop, 
prompting the agents to refine the fix. 

The retry mechanism is a cornerstone of the 
system, enabling iterative improvements until 
an acceptable solution is achieved. Each retry 
leverages feedback from the Critic Agent to 
guide the Architect and Editor Agents in refining 
their outputs.

Such a multi-agent, multi-stage approach 
ensures efficient and accurate bug detection and 
resolution, streamlining the software development 
process and enhancing code quality.

Figure 2. High-level Agentic architecture of the fixing stage of Globant Code Fixer Agent.

12
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Code Fixer’s performance hinges on its flow 
engineering—the orchestration of data and task 
execution among agents—and the strategic 
use of tools designed to augment the agents’ 
capabilities. Key aspects include:

• Return values design: Tools are configured to 
provide structured and actionable feedback to 
the agents, enabling them to make informed 
decisions.

3. Flow Engineering
• LLM-enhanced tooling: Traditional software 

tools are seamlessly integrated with LLMs to 
optimize the localization and fixing process, 
ensuring scalability and precision.

 
Designed with a modular and extensible 
structure, the architecture allows for the 
seamless integration of new tools, techniques, 
or agents to tackle evolving challenges in 
software development.
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Core Technologies

As mentioned before, we’ve tested several 
foundation models in different combinations. 
These are an essential part of the research 
and development process. Here’s a non-
comprehensive list of the ones we evaluated:

• Claude Sonnet 3.5: a SOTA language model 
available in two versions, is designed for 
efficient text understanding and generation, 
enabling nuanced comprehension and 
communication. It has been utilized for 
most of the agents described in System 
Architecture and Design since it has shown 
the best coding capabilities given our 
workflow. 

Foundation Models
• GPT-4o, o1-preview, Gemini 1.5, Llama-3.1: 

These models were incorporated at various 
stages of our research. Each model was 
selected and evaluated based on its specific 
strengths, contributing to different aspects 
of language processing, code analysis, 
and iterative problem-solving. Some of 
them were tested out of curiosity about 
their performance, knowing that they may 
not be ready for a productive environment. 
Currently, we use GPT-4o as a fallback for 
Sonnet. This setup is designed to handle 
situations where Sonnet may be unavailable, 
such as when a rate limit is reached, thereby 
enhancing system robustness at the cost of 
some performance. 

• GPT-4o mini: Used primarily in GCFA’s CLI, 
the model excels in quick and precise code 
modifications, supporting the system’s 
debugging and code refinement processes.

The implementation of GCFA relies on foundation models and robust frameworks to ensure high 
performance and adaptability across a range of tasks. By integrating SOTA technologies, we 
have developed a system that not only meets the demands of complex problem-solving but also 
provides an intuitive user experience.

14

https://www.anthropic.com/claude/sonnet
https://docs.google.com/document/d/1NNrc29MmBlrwhgaEq0vC2d3Tv4JH1TW2mZW6_PyyFV8/edit?pli=1&tab=t.0#heading=h.9gj0nf7yl4b3
https://docs.google.com/document/d/1NNrc29MmBlrwhgaEq0vC2d3Tv4JH1TW2mZW6_PyyFV8/edit?pli=1&tab=t.0#heading=h.9gj0nf7yl4b3
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#o1
https://ai.google.dev/gemini-api/docs/models/gemini
https://ai.meta.com/blog/meta-llama-3-1/
https://platform.openai.com/docs/models#gpt-4o-mini
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To support the diverse functionalities of our 
system, we have integrated several awesome 
frameworks and libraries. The ones to highlight 
are the following:

• AutoGen: A framework that facilitates 
automated workflows, Autogen enables 
seamless execution of tasks such as 
testing, debugging, and report generation 
with minimal manual intervention. It 
emerged as our top pick among several 
possible agent frameworks. It allows us 
to create conversation patterns between 
agents fairly easily. We’re currently using 
v0.2 but are planning to migrate to v0.4 
once it’s stable enough. 

• Tree-sitter: Since we’re dealing with 
codebases, we needed to create tools for 
our agents that could create and traverse 
ASTs—tree-sitter was our top-of-mind 
for this. As a parser generator tool and 
incremental parsing library, it is essential 
for code analysis and manipulation. Tree-
sitter provides the structural analysis 
needed to understand and process source 
code efficiently, forming a backbone for the 
system’s code-related tasks. 

Frameworks and Libraries

• Chameleon: A GeneXus library of white-
label, highly customizable, and reusable 
web components, Chameleon serves as 
the foundation for visualization and end-
user interaction. It supports the creation 
of a dynamic and adaptable user interface, 
facilitating a more intuitive and accessible 
experience for users interacting with AI agents. 

This combination of foundation models and 
frameworks underpins the system’s ability 
to deliver high performance and adaptability, 
ensuring that it remains at the forefront of AI-
driven innovation.

https://microsoft.github.io/autogen/0.2/
https://tree-sitter.github.io/tree-sitter/
https://www.npmjs.com/package/@genexus/chameleon-controls-library
https://www.genexus.com/en/
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Results

SWE-bench is a benchmark designed to evaluate 
codebase problems using verifiable in-repo unit 
tests. The full dataset contains 2,294 issue-
commit pairs across 12 Python repositories, 
offering diverse and challenging evaluation 
tasks for long-term assessments of language 
models (LMs). However, the complexity and 
computational demands of the SWE-bench have 
posed challenges for systems aiming for short-
term progress. To address this, SWE-bench Lite 
was introduced as a streamlined, canonical 
subset of 300 instances focused on functional 
bug fixes. This subset maintains the diversity 
and distribution of repositories in the original 
dataset, covering 11 of the 12 repositories. 

Our work extends beyond achieving high 
performance on benchmarks; we are actively 
deploying our solution in real-world client 
scenarios. The localization phase is extremely 
important because it guides our teams to the 
precise areas in the codebase where issues 
reside. Accurate fault localization empowers 
developers to focus their efforts effectively, 
significantly reducing the time spent on 
debugging and enhancing overall productivity. 

We have integrated our system with industry-
standard tools like Jira, incorporating a 
preliminary phase of problem understanding 
before initiating localization. This integration 

SWE-bench

Real-world Applications and Client Integration

An additional 23 development instances were 
curated to aid active development on SWE-
bench tasks. Our results are being evaluated 
using SWE-bench Lite, 
consistently achieving outcomes that position 
us among the top-performing or SOTA solutions 
globally, with 48.33% of solved tickets. 

The submission of results in SWE-bench 
requires the publication of the agents’ internal 
states to verify the logical process of ticket 
resolution through logs and trajectories. 
For more information, you can refer to the 
results published by competitors on the SWE 
benchmark website.

allows us to extract contextual information from 
issue reports, enabling a more informed and 
targeted localization process. By understanding 
the problem’s context through Jira tickets, our 
solution can provide more accurate and relevant 
localization results, streamlining the transition 
from issue identification to resolution.

We believe that automatic fixing will 
transform many workflows within the software 
development lifecycle. To accommodate diverse 
user needs and integrate seamlessly into 
existing processes, we have developed three 
modes of interaction with our code fixer:

16
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1) Batch Mode: Used primarily for running 
benchmarks, this mode allows for the 
automated processing of multiple fixes without 
user intervention. It’s ideal for large-scale 
codebases and continuous integration pipelines 
where efficiency is paramount.

2) Chat Command Line Interface: This mode 
facilitates integration with tools like Copilot and 
other IDE assistants. Developers can interact 
with the code fixer through command-line 
prompts within their development environment, 
making it a convenient option for those who 
prefer a more hands-on approach.

Figure 3. Screenshot of GCFA’s chat command line interface. 
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3) Web Interface: We have created a web-
based interface that enables users to monitor 
the progress of code fixing in real time. 
This interface combines a visual client with 
conversational capabilities, allowing for iterative 
interactions and providing a transparent view of 
the fixing process.

Figure 4. Screenshot of GCFA’s web interface.

• By offering multiple interaction methods, 
we ensure that our solution is flexible 
and adaptable to various development 
workflows. Whether through automated 
batch processing, command-line 
interactions, or a user-friendly web 
interface, our code fixer integrates 

seamlessly into the developer’s toolkit. This 
versatility not only enhances productivity 
but also facilitates efficient bug resolution 
in real-world applications, affirming our 
commitment to delivering practical and 
impactful agents for our clients.
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1. Context window limitations: Managing 
various context windows was a considerable 
hurdle. Despite advances that allow for 
larger context windows—even those 
exceeding a million tokens—they quickly 
become insufficient for real-world projects 
with extensive codebases. Utilizing these 
large contexts can be inefficient and costly, 
particularly concerning response times, 
even after implementing optimizations like 
prompt caching. 

2. Necessity of an agentic solution: Ensuring 
the need for an agentic solution, where 
iterative loops take precedence over simple 
few-shot prompting, became an area of 
continuous evolution. Relying solely on 
few-shot prompting proved inadequate for 
complex tasks. Developing a loop-based, 
agent-driven approach allowed for more 
nuanced and effective problem-solving but 
required significant research and refinement. 

3. Integrating diverse agent frameworks 
with various models: We encountered 
challenges in harmonizing different agent 
frameworks with the specific requirements 
of each language model. Some models, 
like o1, do not support system prompts, 
while others have limitations regarding 
message role sequences or tool usage. 

Throughout the development of GCFA, we faced several significant challenges:

This required meticulous adjustments and 
customizations to ensure compatibility 
and optimal performance across different 
models and frameworks. 

4. Navigating model guardrails: Dealing with 
the guardrails implemented in certain models 
was also a challenge. These built-in safety 
features sometimes restricted the models 
from performing desired actions, requiring us 
to find workarounds without compromising 
ethical guidelines or model integrity. This 
involved careful prompt engineering and, at 
times, selecting alternative models better 
suited to our needs. 

5. Generating successful code edits: 
Facilitating successful edits to code files 
proved difficult. In their current state, large 
language models (LLMs) without specialized 
tools struggle to perform precise code editing 
tasks. The challenge underscored the need 
for strategies and tools to enhance LLMs’ 
capabilities in code manipulation, such 
as incorporating external code editors or 
developing specialized editing prompts. 

Challenges and Lessons Learned
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6. Cross-language support: Another significant 
challenge was developing a solution that is 
cross-language compatible. Our goal was 
not only to target Python but to support a 
wide range of programming languages. The 
solution we achieved supports numerous 
languages, including: 

• Primary Languages Tested: Python, Java, 
C#, JavaScript, TypeScript. 

• Additional Supported Languages: Delphi, 
ELisp, Go, Guile, Haskell, Julia, Kotlin, Lua, 
OCaml, Odin, Perl, R, Ruby, Rust, Swift. 

7. Tooling: Developing tools to handle the 
syntactic and semantic nuances of diverse 
programming languages required significant 
effort. Our models and frameworks needed 
to parse, analyze, and modify code across 
various paradigms. While testing focused on 
Python, Java, C#, JavaScript, and TypeScript, 
expanding support involved addressing 
challenges such as language-specific syntax, 
standard libraries and frameworks, and 
adapting tooling and compilation pipelines for 
different languages. 

These challenges underscored the complexity 
of developing an effective automatic code-fixing 
solution that is versatile and scalable across 
multiple programming languages.
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Roadmap

Our ongoing efforts are focused on advancing 
the capabilities of the Code Fixer Agent. 
These initiatives aim to optimize collaboration, 
improve accuracy, and enhance the overall user 
experience through the following key areas: 

• Test Agents: We are developing new stages 
and workflows that include environment (i.e., 
sandbox) management and unit test creation 
and execution. These enhancements enable 
the Code Fixer Agent to validate its candidate 
fixes more effectively, thereby reducing 
reliance on the LLM-as-a-judge approach. 

Current Lines of Work

• Evaluation metrics: We analyze, experiment 
with, and develop metrics to optimize 
the flow of information. We are exploring 
combinations of qualitative and quantitative 
metrics to validate and refine the internal 
processes within the multi-agent workflow. 

• Accessibility and ease of use: We aim to 
improve the tool’s speed, interactions, and 
feedback capabilities for our users, with 
a primary focus on enhancing the user 
experience.

Besides our current endeavors, we have numerous 
open lines of research that work on the problem 
of fault localization and automatic code fixing. 
One important area is the work we are conducting 
to develop proprietary benchmarks using real-
world cases. We want to establish controlled 
environments where developers can engage in 
coding exercises that mimic actual client scenarios. 
This approach allows us to test in authentic 
settings, evaluating our architectures and tools 
in environments that closely resemble those of 
our clients, enhancing the applicability of our AI 
Agents. Having our own benchmarks ensures that 
our AI Agents are grounded in practical applicability 
rather than solely relying on standard benchmarks.

Research Opportunities
Another crucial area of research is exploring 
and experimenting with various agentic system 
architectures on different types of bugs, including 
one-line, multi-line, and multi-file errors. We 
recognize that the complexity and nature of bugs 
can vary significantly, and a system (or part of 
it) that performs well on one type may not be as 
effective on another. By testing diverse solutions 
across these different bug categories, we aim to:

21
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Long-Term Vision

• Understand the solution’s strengths and 
weaknesses: Identify which architectures are 
best suited for specific types of bugs.

• Optimize GCFA: Tailor our agentic system to 
be more effective across a broader spectrum 
of issues.

• Develop specialized strategies: Create 
or adapt our system to address the 
unique challenges posed by different bug 
complexities.

These efforts aim to enhance the versatility 
and effectiveness of our Code Fixer Agent. By 
continuously expanding our understanding and 
capabilities, we are better positioned to tackle 
the diverse and complex challenges that arise in 
modern software development.

Our future vision is that a diverse array of agents 
will undoubtedly collaborate on tedious and 
time-consuming tasks across various phases of 
the SDLC. Currently, we are making significant 
advances in areas such as requirements 
analysis, automatic bug reporting, localization 
and fixing, test generation, code generation, 
and finally, automatic UX generation. Our main 
goal is to create an SDLC suite for our users 
that enables them to work faster and with fewer 
errors, providing the appropriate environment to 
maximize their productivity while ensuring an 
enjoyable experience.

We firmly believe that by combining these diverse 
agents to work on a common knowledge base, 
companies’ digital assets will finally have the 

longevity and adaptability to endure over time, 
evolving alongside technological advancements. 
By accelerating the most tedious maintenance 
tasks and streamlining others, such as code 
generation, we can explore and discover novel 
new agents and experiences across all industries.

We envision agents that remove accidental 
complexities in software development across 
all sectors. This will not only simplify the 
development process but also empower 
businesses to focus on innovation and 
deliver exceptional value to their customers. 
By harnessing the collective capabilities of 
specialized agents, we aim to revolutionize the 
software development lifecycle, making it more 
efficient, adaptable, and future-proof.
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• RepairAgent: Following their Agent design, we 
adopted a multi-stage strategy (localization 
and fix) and were inspired by some tools 
related to code search. 
 
 

We draw inspiration from various agents, whether open source or accompanied by published research. 
Here are a few notable mentions:  

• Aider: We followed the research shared in the 
community in relation to editing benchmarks 
and decided to try how dividing the roles of 
“architect” and “editor” worked in GCFA.
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Glossary
Terminology      Definition

AI       Artificial Intelligence

LLM       Large Language Model

GCFA       Globant Code Fixer Agent

GEAI       Globant Enterprise AI

SDLC       Software Development Life Cycle

CoT       Chain-of-Thought

ToT       Tree-of-Thought

PoC       Proof-of-Concept

E2E       End to End

SOTA       State-of-the-Art

AST       Abstract Syntax Tree
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About Globant
At Globant, we create the digitally-native products that people love. We bridge the gap between 
businesses and consumers through technology and creativity, leveraging our expertise in AI. 
We dare to digitally transform organizations and strive to delight their customers.

• We have more than 29,900 employees and are present in 34 countries across 5 
continents, working for companies like Google, Electronic Arts, and Santander, 
among others.

• We were named a Worldwide Leader in AI Services (2023) and a Worldwide Leader 
in CX Improvement Services (2020) by IDC MarketScape report.

• We are the fastest-growing IT brand and the 5th strongest IT brand globally (2024), 
according to Brand Finance.

• We were featured as a business case study at Harvard, MIT, and Stanford.

• We are active members of The Green Software Foundation (GSF) and the 
Cybersecurity Tech Accord.

For more information, visit   www.globant.com
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